Virtual training for effective collaborative response to airport emergencies: The CRISIS Project

Ifan D H Shepherd
Deputy Project Coordinator, CRISIS
Middlesex University, London
What is CRISIS?

- 3-year FP7 R&D project (2010-2013) [Contract No. FP7-242474]
- Better preparation of emergency managers and responders
- Through interactive training simulations
- Based on 3D videogame technology
- 12 European partners
From videogames to serious games

II2 Sturmovik
Major Incidents
Everyday accidents
Classroom learning

Trainees

Exercise managers
Table-Top Exercises
CRISIS

Live Exercises
Why CRISIS?

- Complements and enhances conventional training:
 -- classroom teaching
 -- table-top exercises
 -- role-play simulations
 -- live exercises
- Cheaper (can be)
- More frequent/ad hoc/self service training
- Easier to replicate training setups
- Easier to apply controlled variations to training
CRISIS end-user partners

ANA Lisbon Airport - Portugal

ISAVIA Keflavik Airport - Iceland

British Transport Police
Scope of the CRISIS simulation environment

Boundaries of the Airport (= on-site) – this specifies the limits of CRISIS

National or Regional Commands (outside the airport limits or “off-site”)

First Responders
Team Leaders

Coordinator
On-Scene Commander

EOC

CRISIS will support actions at the EOC, On-Scene Commander, and the Coordinator Levels

CRISIS design principle: Support actions, not roles
Modes of Training

<table>
<thead>
<tr>
<th></th>
<th>Co-Located</th>
<th>Distributed / Dispersed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avatars (other team members simulated by the system and presented on the display)</td>
<td></td>
</tr>
<tr>
<td>Team</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Real players (real players acting in a simulated environment)</td>
<td></td>
</tr>
</tbody>
</table>
Team training approaches

1. Trainer led [Fully implemented]
 - Trainer delivers scenario
 - Emergency response team role plays
 - Operator manages the simulation software
 - Trainees typically on one site
 - Trainer debriefs trainees
Team training approaches

2. Automated [Under development]:

- Software delivers training scenario
- Trainees interact via the software
- Trainees may be distributed
- Software gathers data on trainee communications, actions and decisions
- Software facilitates provision of reports for after-action reviews
General characteristics of CRISIS

- Realism – physical & response fidelity, plausibility
- Highly interactive environments
- Real-time decision making
- Two complementary perspectives…
Two trainee perspectives

Field operations (FDX)
First-person: Immersive, first responders

Command post (CPX)
Third-person: Synoptic, commanders
Field operations viewpoint
Command post viewpoint
General characteristics of CRISIS

- Realism – physical & response fidelity, plausibility
- Highly interactive environments
- Real-time decision making
- Two complementary perspectives
- Interaction and movement between the two during training sessions
- Pre-prepared scenarios & injected events (VUF)
Scenario design methodology

Aircraft crash scenario

investigation scenario

Bomb threat scenario
Scenario storyboarding

ISAVIA Scenario

ANA Scenario

BTP Scenario
Scenario design tool
Variable Uncertainty Framework

- **Number of events**
 - Many sub-events
 - Single sub-event

- **Advanced Drill-type exercises**
 - Randomness of event presentation
 - Tightly controlled

- **Basic Drill-type exercises**
 - Random

- **Intermediate Expertise**

- **Advanced Expertise**
 - Complicated
 - Situational complexity
CRISIS training approaches

- Training, demonstrating and testing
- Repeat training (mastery) and varied training (transfer)
- Part-task and whole-task training

Based on 4C/ID model

Training design methodology

1. **Training Requirements**
 1. Understanding the Operational Task, including:
 a) Tasks
 b) Complexities
 c) Variabilities
 d) Difficulty/Importance/Frequency (DIF)
 2. Identify Required Competencies, including:
 a) Learning difficulty
 3. Identify Training Gaps, including:
 a) Entry/Exit criteria
 b) Training objectives

2. **Syllabus Design**
 - Identify task classes
 - Ensure variability
 - Drills
 - Easy
 - Low complexity
 - Few events
 - Advanced
 - High complexity
 - Many events

3. **Exercise Design**
 1. Plan each exercise
 a) set level of complexity
 b) set level of variability
 c) select objectives (competencies)
 d) outline scenario, ensure relevant tasks included

4. **Scenario Generation**
 - Convert task classes into scenario timeline using CITE Planner
 1. Drill - Few events, small random windows, low complexity
 2. Whole tasks
 a) Easy – Few events, large random windows, low complexity
 b) Intermediate – Moderate number of events, large random window, moderate complexity
 c) Advanced – Large number of events, large random window, high complexity
Understanding decision making

- Information sources:
 - published literature
 - airport emergency plans
 - interviews with end-user partners
 - observation of live training exercises

- Design CRISIS to enable effective decision making dynamics

- Use CRISIS to evaluate virtual training
Case study: Live exercise

- 4-5 May 2012 -- major live exercise at Keflavik international airport, Iceland
- Scenario: Aircraft crash lands and bursts into flames
- NOT a training event -- demonstration of competence in operationalising Airport Emergency Plan (ICAO)
- Preceded by table-top simulation exercise by team commanders on previous day
- Involved some 200 personnel
Day 1: table-top exercise

- A dozen key team leaders in planning room for 2 hours around table-top airport map
- Radio communication with on-scene command centre
- Presented with scenario at outset
- Interactions closely observed and recorded
Day 1: table-top exercise
Day 1: table-top exercise

- Usual team dynamics:
 -- dominant vs quiet individuals
 -- talking vs thinking vs action taking
 -- explicit vs implicit communication

- Significance of map and moveable ‘toys’
 -- focus of interactions/discussions/debates
 -- outcome/record of group decision making
Day 2: live exercise

- Scores of ‘actors’ role playing aircraft passengers
 -- walking wounded, dead, unharmed, etc.
- All major emergency agencies represented
 -- fire, ambulance, police
 -- hospitals
 -- mountain rescue
 -- trauma counsellors
- Multiple communication systems
 -- radio, cellphone, face-to-face, etc.
- Three major venues:
 -- crash scene
 -- casualty treatment centre
 -- hospital (School)
After-action review

Casualty flow

Communications network
Decisions: timeline views
Topic maps summaries

for what patients was a mistake made?

Halldor, green, lightly injured, firefighter10, Geir, heavily injured, black, firefighter6, firefighter9

triger, triage tag, triage tag, health, health, triger, triger, health, health, triage tag, triage tag, health, triage tag, triger, triger

mistake, mistake, mistake, mistake, mistake, mistake

patient, patient, patient, patient, patient

victim19, victim25, victim28, victim34, victim33
Hypotheses from the literature…

The Cost of Collaboration: Why Joint Decision Making Exacerbates Rejection of Outside Information

Julia A. Minson and Jennifer S. Mueller
The Wharton School, University of Pennsylvania

Abstract
Prior investigators have asserted that certain group characteristics cause group members to disregard outside information and that this behavior leads to diminished performance. We demonstrate that the very process of making a judgment collaboratively rather than individually also contributes to such myopic underweighting of external viewpoints. Dyad members exposed to numerical judgments made by peers gave significantly less weight to those judgments than did individuals working alone. This difference in willingness to use peer input was mediated by the greater confidence that the dyad members reported in the accuracy of their own estimates. Furthermore, dyads were no better at judging the relative accuracy of their own estimates and the advisor's estimates than individuals were. Our analyses demonstrate that, relative to individuals, dyads suffered an accuracy cost. Specifically, if dyad members had given as much weight to peer input as individuals working alone did, then their revised estimates would have been significantly more accurate.

Keywords
decision making, judgment, dyads, advice taking, egocentric discounting
Hypotheses from the live exercise…
Questions..?
Thanks for listening!

Professor Ifan D H Shepherd
Deputy Project Coordinator, CRISIS
Middlesex University
London, UK
I.Shepherd@mdx.ac.uk

idc.mdx.ac.uk/projects/crisis/